Ionospheric perturbation during the South American total solar eclipse on 14th December 2020 revealed with the Chilean GPS eyeball

Author:

Shrivastava Mahesh N.,Maurya Ajeet Kumar,Kumar Kondapalli Niranjan

Abstract

AbstractThe influence of the South American total solar eclipse of 14th December 2020 on the ionosphere is studied by using the continuous Chilean Global Positioning System (GPS) sites across the totality path. The totality path with eclipse magnitude 1.012 passed through the Villarrica (Lon. 72.2308°W and Lat. 39.2820°S) in south Chile during 14:41:02.0 UTC to 17:30:58.1 UTC and maximum occurred ~ 16:03:49.5 UTC around the local noon. The vertical total electron content (VTEC) derived by GPS sites across the totality path for two PRN’s 29 and 31 show almost 20–40% of reduction with reference to ambient values. The percentage reduction was maximum close to totality site and decreases smoothly on both sides of totality sites. Interestingly, the atmospheric gravity waves (AGWs) with a period ~ 30–60 min obtained using wavelet analysis of VTEC timeseries show the presence of strong AGWs at the GPS sites located north of the totality line. But the AGWs do not show any significant effect on the VTEC values to these sites. Our analysis suggests, possibly an interplay between variability in the background plasma density and eclipse-generated AGWs induced plasma density perturbation could explain the observations.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3