Kondo effect and superconductivity in niobium with iron impurities

Author:

Zeng Hansong,Zhou Dan,Liang Guoqing,Tang Rujun,Hang Zhi H.,Hu Zhiwei,Pei Zixi,Ling X. S.

Abstract

AbstractKondo effect is an interesting phenomenon in quantum many-body physics. Niobium (Nb) is a conventional superconductor important for many superconducting device applications. It was long thought that the Kondo effect cannot be observed in Nb because the magnetic moment of a magnetic impurity, e.g. iron (Fe), would have been quenched in Nb. Here we report an observation of the Kondo effect in a Nb thin film structure. We found that by co-annealing Nb films with Fe in Argon gas at above 400 $$^{\circ }$$ C for an hour, one can induce a Kondo effect in Nb. The Kondo effect is more pronounced at higher annealing temperature. The temperature dependence of the resistance suggests existence of remnant superconductivity at low temperatures even though the system never becomes superconducting. We find that the Hamann theory for the Kondo resistivity gives a satisfactory fitting to the result. The Hamann analysis gives a Kondo temperature for this Nb–Fe system at $$\sim $$ 16 K, well above the superconducting transition onset temperature 9 K of the starting Nb film, suggesting that the screening of the impurity spins is effective to allow Cooper pairs to form at low temperatures. We suggest that the mechanism by which the Fe impurities retain partially their magnetic moment is that they are located at the grain boundaries, not fully dissolved into the bcc lattice of Nb.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3