Author:
Xu Zhifei,Pan Zhigeng,Wang Yan,Zhang Yichao,Leng Pengfei
Abstract
AbstractCommunity correction institutions in China frequently employ the Symptom Checklist-90 (SCL-90) and the health survey brief (SF-12) as primary tools for psychological assessment of community correctional prisoners. However, in practical application, the SCL-90 Checklist faces issues such as complex item numbers, overall low cultural level of the subjects, and insufficient professional level of the administrators. The SF-12 health survey brief, as a preliminary screening tool, although only has 12 questions, to some extent simplifies the evaluation process and improves work efficiency, it is prone to missed screening. The research team collected 17-dimensional basic characteristic data and corresponding SCL-90 and SF-12 data from 25,480 samples of community correctional prisoners in Zhejiang Province, China. This study explored the application of multi-label multi-classification algorithms and oversampling techniques in building machine learning models to delve into the correlation between the psychological health risks of community correctional prisoners and their characteristic data. Inspired by computerized adaptive testing (CAT), we constructed an adaptive and efficient screening model for community correctional prisoners through experimental comparisons, based on the binary relevance algorithm with sample oversampling. This screening model personalize the assessment process by dynamically matching participants with the most relevant subset (s) of the nine dimensions of the SCL-90 based on their individual characteristics. Thus, adaptive dynamic simplification and personalized recommendation of the SCL-90 scale between question groups were achieved for the specific group of community correctional prisoners. As a screening tool for psychological symptoms of community correctional prisoners, this model significantly simplifies the number of questions compared to SCL-90, with a simplification rate of up to 65%. However, it achieves this simplification while maintaining excellent performance. The accuracy reached 0.66, with a sensitivity of 0.754, and an F1 score of 0.649. This innovation simplified the assessment process, reduced the assessment time, improved work efficiency, and enhanced the ability to judge the specificity of community correctional prisoners population. Compared to the SF-12, although the simplification rate and accuracy of the model are slightly lower than those of the SF-12, the sensitivity increased by 42.26%, and the F1 score improved by 15.28%. This means the model greatly reduces the possibility of missed screening, effectively preventing prisoners with abnormal psychological or mental states from losing control due to missed screening, and even committing suicide, self injury, or injuring others.
Funder
The General Scientific Research Project of Zhejiang Provincial Department of Education
The Basic Public Welfare Fund Project of Zhejiang Provincial Department of Science and Technology
The Natural Science Foundation Project of Zhejiang Province Department of Science and Technology
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Chunyan, Xu. & Hongzhong, Q. Investigation and analysis of mental health of prisoners. Chin. J. Health Psychol. 01, 92–93 (2007).
2. Liu, S. et al. A survey on the psychological health status of community prisoners. Psychol. Sci. 29(6), 1452–1455 (2006).
3. Bureau, G. P. A. Investigation report on the psychological status of prisoners in Guangdong Province. Res. Crime Correct. 03, 13–22 (2009).
4. Yuan, Z. & Ming, Y. Application and research trends of criminal psychological measurement in China. J. Shandong Police Acad. 01, 103–109 (2022).
5. Zhou, J. Research on the Prevention of Violent Recidivism: Taking 50 Cases of Violent Recidivism as an Example (Zhejiang University of Technology, 2023).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献