Author:
Chen Hui-Ju,Dai Fan-Jhen,Chen Cheng-You,Fan Siao-Ling,Zheng Ji-Hong,Chau Chi-Fai,Lin Yung-Sheng,Chen Chin-Shuh
Abstract
AbstractRice protein was used as a starting material to provide rice protein hydrolysates (RPH) through enzyme-assisted extraction. RPH was further fractionated using ultrafiltration membrane (UF) and classified by molecular weight (MW; MW < 1 kDa, MW 1–10 kDa, and MW > 10 kDa). Peptides with MW < 1 kDa possessed superior antioxidant properties (p < 0.05). Therefore, UF demonstrated great efficacy in selectively separating antioxidant peptides. A Pearson correlation analysis revealed that the total phenolic concentration was correlated with oxygen radical absorbance capacity (ORAC; r = 0.999, p < 0.05). Amino acid contents had negative correlations with the scavenging activity (specifically, IC50) of 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radicals (r = − 0.986 to − 1.000). Reducing power was related to aromatic amino acid contents (r = 0.997, p < 0.05). In this study, enzymatic hydrolysis was discovered to be an effective method of extracting and isolating natural antioxidant proteins from broken rice, thus preserving the nutritional quality of rice and making those proteins more accessible in future applications.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献