Structural investigation of borosilicate glasses containing lanthanide ions

Author:

Fabian M.,Gergely F.,Osan J.,Cendak T.,Kesari S.,Rao R.

Abstract

AbstractHigh level radioactive actinides are produced as a side product in reprocessing spent nuclear fuel, for which safe long-term-inert immobilizer matrices are needed. Borosilicate glasses are of great potential amongst the candidates of suitable inert materials for radioactive waste immobilization. Understanding the effects of actinide addition to a borosilicate glass matrix is of great importance in view of waste immobilization. Here we present structural studies of a simplified glass-matrix, − 55SiO2·10B2O3·25Na2O·5BaO·5ZrO2 - upon adding lanthanide (Ln-)oxides: CeO2, Nd2O3, Eu2O3, in two different concentrations 10% and 30w% each, to investigate the effects of lanthanides (Ln) taken as chemical surrogates for actinides. Neutron diffraction combined with of Reverse Monte Carlo simulations show that all investigated glass structures comprise tetrahedral SiO4, trigonal BO3 and tetrahedral BO4 units, forming mixed [4]Si-O-[3]B and [4]Si-O-[4]B linkages. 11B Magic Angle Spinning Nuclear Magnetic Resonance is indicative of simultaneous presence of trigonal BO3 and tetrahedral BO4 units, with spectral fractions strongly dependent on the Ln addition. Ln-addition promote the BO3 + O-→[BO4] isomerization resulting in lower fraction of boron in BO3, as compared to BO4 units. Raman spectra, in full agreement with neutron diffraction, confirm that the basic network structure consists of BO3/trigonal and SiO4/BO4 tetrahedral units. Second neighbour atomic pair correlations reveal Ce, Nd, Eu to be accommodated in both Si and B sites, supporting that the borosilicate-matrix well incorporates Ln-ions and is likely to similarly incorporate actinides, opening a way to radioactive nuclear waste immobilization of this group of elements in a borosilicate glass matrix.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3