Expansion and characterization of epithelial stem cells with potential for cyclical hair regeneration

Author:

Takeo Makoto,Asakawa Kyosuke,Toyoshima Koh-ei,Ogawa Miho,Tong JingJing,Irié Tarou,Yanagisawa Masayuki,Sato Akio,Tsuji Takashi

Abstract

AbstractIn mammals, organ induction occurs only during embryonic development except for hair follicles (HFs). However, HF-resident epithelial stem cells (HFSCs), which are responsible for repetitive HF regeneration, are not fully characterized. Here, we establish in vitro culture systems that are capable of controlling the ability of HFSCs to regenerate HFs. Based on a method that precisely controlled the number of HFs for regeneration, functional analysis revealed that CD34/CD49f/integrin β5 (Itgβ5)-triple-positive (CD34+/CD49f+/Itgβ5+) cells have multipotency and functional significance for continual hair regeneration. In native HFs, these cells reside in the uppermost area of the bulge region, which is surrounded by tenascin in mice and humans. This study unveils the subpopulation of HFSCs responsible for long-term hair cycling of HFs regenerated from bioengineered HF germ, suggesting the presence of functional heterogeneity among bulge HFSCs and the utility of our culture system to achieve HF regenerative therapy.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3