A new method for measuring treadmill belt velocity fluctuations: effects of treadmill type, body mass and locomotion speed

Author:

Willwacher Steffen,Oberländer Kai Daniel,Mai Patrick,Mählich Daniela,Kurz Markus,Koopmann Till,Fohrmann Dominik,Kantarev Artur,Kersting Uwe Gustav

Abstract

AbstractTreadmills are essential to the study of human and animal locomotion as well as for applied diagnostics in both sports and medicine. The quantification of relevant biomechanical and physiological variables requires a precise regulation of treadmill belt velocity (TBV). Here, we present a novel method for time-efficient tracking of TBV using standard 3D motion capture technology. Further, we analyzed TBV fluctuations of four different treadmills as seven participants walked and ran at target speeds ranging from 1.0 to 4.5 m/s. Using the novel method, we show that TBV regulation differs between treadmill types, and that certain features of TBV regulation are affected by the subjects’ body mass and their locomotion speed. With higher body mass, the TBV reductions in the braking phase of stance became higher, even though this relationship differed between locomotion speeds and treadmill type (significant body mass × speed × treadmill type interaction). Average belt speeds varied between about 98 and 103% of the target speed. For three of the four treadmills, TBV reduction during the stance phase of running was more intense (> 5% target speed) and occurred earlier (before 50% of stance phase) unlike the typical overground center of mass velocity patterns reported in the literature. Overall, the results of this study emphasize the importance of monitoring TBV during locomotor research and applied diagnostics. We provide a novel method that is freely accessible on Matlab’s file exchange server (“getBeltVelocity.m”) allowing TBV tracking to become standard practice in locomotion research.

Funder

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3