Latent inter-organ mechanism of idiopathic pulmonary fibrosis unveiled by a generative computational approach

Author:

Kozawa Satoshi,Tejima Kengo,Takagi Shunki,Kuroda Masataka,Nogami-Itoh Mari,Kitamura Hideya,Niwa Takashi,Ogura Takashi,Natsume-Kitatani Yayoi,Sato Thomas N.

Abstract

AbstractIdiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease characterized by complex lung pathogenesis affecting approximately three million people worldwide. While the molecular and cellular details of the IPF mechanism is emerging, our current understanding is centered around the lung itself. On the other hand, many human diseases are the products of complex multi-organ interactions. Hence, we postulate that a dysfunctional crosstalk of the lung with other organs plays a causative role in the onset, progression and/or complications of IPF. In this study, we employed a generative computational approach to identify such inter-organ mechanism of IPF. This approach found unexpected molecular relatedness of IPF to neoplasm, diabetes, Alzheimer’s disease, obesity, atherosclerosis, and arteriosclerosis. Furthermore, as a potential mechanism underlying this relatedness, we uncovered a putative molecular crosstalk system across the lung and the liver. In this inter-organ system, a secreted protein, kininogen 1, from hepatocytes in the liver interacts with its receptor, bradykinin receptor B1 in the lung. This ligand–receptor interaction across the liver and the lung leads to the activation of calmodulin pathways in the lung, leading to the activation of interleukin 6 and phosphoenolpyruvate carboxykinase 1 pathway across these organs. Importantly, we retrospectively identified several pre-clinical and clinical evidence supporting this inter-organ mechanism of IPF. In conclusion, such feedforward and feedback loop system across the lung and the liver provides a unique opportunity for the development of the treatment and/or diagnosis of IPF. Furthermore, the result illustrates a generative computational framework for machine-mediated synthesis of mechanisms that facilitates and complements the traditional experimental approaches in biomedical sciences.

Funder

Cabinet Office of Japan Government for the Public/Private R&D Investment Strategic Expansion Program

MHLW Health, Labour and Welfare Sciences Research Grants Program

Innovative Science and Technology Initiative for Security

Nakatani Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3