Author:
Bajrai Leena Hussein,El-Kafrawy Sherif Ali,Hassan Ahmed Mohamed,Tolah Ahmed Majdi,Alnahas Rabie Saleh,Sohrab Sayed Sartaj,Rehan Mohd,Azhar Esam Ibraheem
Abstract
AbstractHypericum perforatum and Echinacea are reported to have antiviral activities against several viral infections. In this study, H. perforatum (St. John’s Wort) and Echinacea were tested in vitro using Vero E6 cells for their anti-viral effects against the newly identified Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) through its infectious cycle from 0 to 48 h post infection. The hypericin of H. perforatum and the different parts (roots, seeds, aerial) of two types of Echinacea species (Echinacea purpurea and Echinacea angustifolia) were tested for their anti-viral activities to measure the inhibition of viral load using quantitative real-time polymerase chain reaction (qRT-PCR) on cell culture assay. Interestingly, the H. perforatum-Echinacea mixture (1:1 ratio) of H. perforatum and Echinacea was tested as well on SARS-CoV-2 and showed crucial anti-viral activity competing H. perforatum then Echinacea effects as anti-viral treatment. Therefore, the results H. perforatum and Echinacea species, applied in this study showed significant anti-viral and virucidal effects in the following order of potency: H. perforatum, H. perforatum-Echinacea mixture, and Echinacea on SARS-CoV-2 infectious cycle. Additionally, molecular simulation analysis of the compounds with essential proteins (Mpro and RdRp) of the SARS-CoV-2 revealed the most potent bioactive compounds such as Echinacin, Echinacoside, Cyanin, Cyanidin 3-(6''-alonylglucoside, Quercetin-3-O-glucuronide, Proanthocyanidins, Rutin, Kaempferol-3-O-rutinoside, and Quercetin-3-O-xyloside. Thus, based on the outcome of this study, it is demanding the setup of clinical trial with specific therapeutic protocol.
Funder
Jameel Fund for Infectious Disease Research and Innovation in Saudi Arabia
Publisher
Springer Science and Business Media LLC
Reference86 articles.
1. Fouchier, R. A. et al. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature 423, 240 (2003).
2. de Groot, R. J. et al. Commentary: Middle east respiratory syndrome coronavirus (mers-cov): Announcement of the coronavirus study group. J. Virol. 87, 7790–7792 (2013).
3. Giwa, A. L., Desai, A. & Duca, A. Novel 2019 coronavirus SARS-CoV-2 (COVID-19): An overview for emergency clinicians. Pediatr. Emerg. Med. Pract. 17, 1–24 (2020).
4. Zhang, L. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368, 409–412 (2020).
5. Cui, J., Li, F. & Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献