Structural controllability of general edge dynamics in complex network

Author:

Pang Shaopeng,Zhou Yue,Ren Xiang,Xu Fangzhou

Abstract

AbstractDynamic processes that occur on the edge of complex networks are relevant to a variety of real-world systems, where states are defined on individual edges, and nodes are active components with information processing capabilities. In traditional studies of edge controllability, all adjacent edge states are assumed to be coupled. In this paper, we release this all-to-all coupling restriction and propose a general edge dynamics model. We give a theoretical framework to study the structural controllability of the general edge dynamics and find that the set of driver nodes for edge controllability is unique and determined by the local information of nodes. Applying our framework to a large number of model and real networks, we find that there exist lower and upper bounds of edge controllability, which are determined by the coupling density, where the coupling density is the proportion of adjacent edge states that are coupled. Then we investigate the proportion of effective coupling in edge controllability and find that homogeneous and relatively sparse networks have a higher proportion, and that the proportion is mainly determined by degree distribution. Finally, we analyze the role of edges in edge controllability and find that it is largely encoded by the coupling density and degree distribution, and are influenced by in- and out-degree correlation.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Improvement of Optimal Control Strategy for a Fixed Number of Control Nodes;2023 42nd Chinese Control Conference (CCC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3