Relative density of United States forests has shifted to higher levels over last two decades with important implications for future dynamics

Author:

Woodall C. W.,Weiskittel A. R.

Abstract

AbstractTree size-density dynamics can inform key trends in forest productivity along with opportunities to increase ecosystem resiliency. Here, we employ a novel approach to estimate the relative density (RD, range 0–1) of any given forest based on its current size-density relationship compared to a hypothetical maximum using the coterminous US national forest inventory between 1999 and 2020. The analysis suggests a static forest land area in the US with less tree abundance but greatly increased timber volume and tree biomass. Coupled with these resource trends, an increase in RD was identified with 90% of US forest land now reaching a biologically-relevant threshold of canopy closure and/or self-thinning induced mortality (RD > 0.3), particularly in areas prone to future drought conditions (e.g., West Coast). Notably, the area of high RD stands (RD > 0.6) has quintupled over the past 20 years while the least stocked stands (RD < 0.3) have decreased 3%. The evidence from the coterminous US forest RD distribution suggest opportunities to increase live tree stocking in understocked stands, while using density management to address tree mortality and resilience to disturbances in increasingly dense forests.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3