Air quality prediction model based on mRMR–RF feature selection and ISSA–LSTM

Author:

Wu Huiyong,Yang Tongtong,Li Hongkun,Zhou Ziwei

Abstract

AbstractSevere air pollution poses a significant threat to public safety and human health. Predicting future air quality conditions is crucial for implementing pollution control measures and guiding residents' activity choices. However, traditional single-module machine learning models suffer from long training times and low prediction accuracy. To improve the accuracy of air quality forecasting, this paper proposes a ISSA–LSTM model-based approach for predicting the air quality index (AQI). The model consists of three main components: random forest (RF) and mRMR, improved sparrow search algorithm (ISSA), and long short-term memory network (LSTM). Firstly, RF–mRMR is used to select the influential variables affecting AQI, thereby enhancing the model's performance. Next, ISSA algorithm is employed to optimize the hyperparameters of LSTM, further improving the model’s performance. Finally, LSTM model is utilized to predict AQI concentrations. Through comparative experiments, it is demonstrated that the ISSA–LSTM model outperforms other models in terms of RMSE and R2, exhibiting higher prediction accuracy. The model's predictive performance is validated across different time steps, demonstrating minimal prediction errors. Therefore, the ISSA–LSTM model is a viable and effective approach for accurately predicting AQI.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3