Investigation of the performance of a horizontal-axis dual rotor wind turbine

Author:

Salah Dina Ahmed Hosni,Nosier Mahmoud Abed El-Rasheed,Hamed Ashraf Mostafa

Abstract

AbstractRecent years have seen a rise in interest in wind energy as a useful alternative to harmful energies like fossil fuels. The dual rotor wind turbine (DRWT) offers more rapid rates of wind energy extraction. The current study intends to compare the performance of the turbine with and without the addition of a second rotor. Additionally, it examines how tip speed ratio and phase shift angle will affect DRWT performance. Realizable k-shear stress transport turbulence models are used to solve the three-dimensional, turbulent, stable, and incompressible flow equations for the performance of dual-rotor wind turbines. Domain-independence tests and an impartial mesh test are run to assess the results and ensure their accuracy. The researcher relies on previous studies while constructing the single rotor wind turbine model. This model uses an S826 airfoil. The front and rear rotors are given streamlined representations using ANSYS, according to the researcher. The independent mesh test indicates that the mesh density has 11.5 million elements. The experiment's results show that the DRWT has a significant effect on the efficiency of wind energy.

Funder

Funding Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Ain Shams University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3