High sensitivity sanger sequencing detection of BRAF mutations in metastatic melanoma FFPE tissue specimens

Author:

Cheng Lauren Y.,Haydu Lauren E.,Song Ping,Nie Jianyi,Tetzlaff Michael T.,Kwong Lawrence N.,Gershenwald Jeffrey E.,Davies Michael A.,Zhang David Yu

Abstract

AbstractMutations in the BRAF gene at or near the p. V600 locus are informative for therapy selection, but current methods for analyzing FFPE tissue DNA generally have a limit of detection of 5% variant allele frequency (VAF), or are limited to the single variant (V600E). These can result in false negatives for samples with low VAFs due to low tumor content or subclonal heterogeneity, or harbor non-V600 mutations. Here, we show that Sanger sequencing using the NuProbe VarTrace BRAF assay, based on the Blocker Displacement Amplification (BDA) technology, is capable of detecting BRAF V600 mutations down to 0.20% VAF from FFPE lymph node tissue samples. Comparison experiments on adjacent tissue sections using BDA Sanger, immunohistochemistry (IHC), digital droplet PCR (ddPCR), and NGS showed 100% concordance among all 4 methods for samples with BRAF mutations at ≥ 1% VAF, though ddPCR did not distinguish the V600K mutation from the V600E mutation. BDA Sanger, ddPCR, and NGS (with orthogonal confirmation) were also pairwise concordant for lower VAF mutations down to 0.26% VAF, but IHC produced a false negative. Thus, we have shown that Sanger sequencing can be effective for rapid detection and quantitation of multiple low VAF BRAF mutations from FFPE samples. BDA Sanger method also enabled detection and quantitation of less frequent, potentially actionable non-V600 mutations as demonstrated by synthetic samples.

Funder

Division of Cancer Prevention, National Cancer Institute

U.S. Army Medical Research Acquisition Activity

National Institutes of Health

Cancer Prevention and Research Institute of Texas

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3