A new model for compressor surge and stall control

Author:

Shahriyari M. J.,Firouzabadi A.,Khaleghi H.,Esmailifar S. M.

Abstract

AbstractThis paper compares the bifurcations and closed-loop performances of two compressor models, Moore-Greitzer (MG) and a developed model based on MG (Shahriyari Khaleghi, SK). First, both models are linearized about two equilibrium points (pure surge and fully-developed rotating stall), and the perturbed state-space dynamics and input matrices are obtained. The compressor unstable regions are then identified using an eigenvalue and global bifurcation analysis. Furthermore, optimal LQR controllers are designed, and the performances of closed-loop systems are compared. The LQRs are designed to control the compression system near the peak pressure rise by suppressing surge or stall. Results reveal that if the initial operating point is in the positive slope region of the compressor characteristic and the initial amplitude of the disturbances is small, the LQR controller can stabilize the compressor in both models. However, when the disturbances are intensive, the two models respond differently: although the SK model damps a fair range of disturbances and predicts instability for excessively powerful disturbances, the MG model always damps them, even when extremely intense. Without a controller in the MG model, initial disturbances (even very large) can never grow and are always damped in the compressor’s negative slope region (obviously, the same applies to the controller). However, pending the amplitude of the disturbances (in the absence of a controller), the disturbances in the SK model may be damped or grow. The SK model can successfully control the instabilities if the disturbances are small. Nonetheless, the controller fails to dampen the instabilities for extreme disturbances, which is consistent with reality.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3