Simulation analysis of visual perception model based on pulse coupled neural network

Author:

Li Mingdong

Abstract

AbstractPulse-coupled neural networks perform well in many fields such as information retrieval, depth estimation and object detection. Based on pulse coupled neural network (PCNN) theory, this paper constructs a visual perception model framework and builds a real image reproduction platform. The model firstly analyzes the structure and generalization ability of neural network multi-class classifier, uses the minimax criterion of feature space as the splitting criterion of visual perception decision node, which solves the generalization problem of neural network learning algorithm. In the simulation process, the initial threshold is optimized by the two-dimensional maximum inter-class variance method, and in order to improve the real-time performance of the algorithm, the fast recurrence formula of neural network is derived and given. The PCNN image segmentation method based on genetic algorithm is analyzed. The genetic algorithm improves the loop termination condition and the adaptive setting of model parameters of PCNN image segmentation algorithm, but the PCNN image segmentation algorithm still has the problem of complexity. In order to solve this problem, this paper proposed an IGA-PCNN image segmentation method combining the improved algorithm and PCNN model. Firstly, it used the improved immune genetic algorithm to adaptively obtain the optimal threshold, and then replaced the dynamic threshold in PCNN model with the optimal threshold, and finally used the pulse coupling characteristics of PCNN model to complete the image segmentation. From the coupling characteristics of PCNN, junction close space of image and gray level characteristics, it determined the local gray mean square error of image connection strength coefficient. The feature extraction and object segmentation properties of PCNN come from the spike frequency of neurons, and the number of neurons in PCNN is equal to the number of pixels in the input image. In addition, the spatial and gray value differences of pixels should be considered comprehensively to determine their connection matrix. Digital experiments show that the multi-scale multi-task pulse coupled neural network model can shorten the total training time by 17 h, improve the comprehensive accuracy of the task test data set by 1.04%, and shorten the detection time of each image by 4.8 s compared with the series network model of multiple single tasks. Compared with the traditional PCNN algorithm, it has the advantages of fast visual perception and clear target contour segmentation, and effectively improves the anti-interference performance of the model.

Funder

Key Natural Science Research Project of Suzhou University

Software Engineering Provincial Basic Level Teaching and Research Office Demonstration Project

School level dual teaching team of Suzhou University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3