Technical considerations of multi-parametric tissue outcome prediction methods in acute ischemic stroke patients

Author:

Winder Anthony J.,Siemonsen Susanne,Flottmann FabianORCID,Thomalla Götz,Fiehler Jens,Forkert Nils D.ORCID

Abstract

Abstract Decisions regarding acute stroke treatment rely heavily on imaging, but interpretation can be difficult for physicians. Machine learning methods can assist clinicians by providing tissue outcome predictions for different treatment approaches based on acute multi-parametric imaging. To produce such clinically viable machine learning models, factors such as classifier choice, data normalization, and data balancing must be considered. This study gives comprehensive consideration to these factors by comparing the agreement of voxel-based tissue outcome predictions using acute imaging and clinical parameters with manual lesion segmentations derived from follow-up imaging. This study considers random decision forest, generalized linear model, and k-nearest-neighbor machine learning classifiers in conjunction with three data normalization approaches (non-normalized, relative to contralateral hemisphere, and relative to contralateral VOI), and two data balancing strategies (full dataset and stratified subsampling). These classifier settings were evaluated based on 90 MRI datasets from acute ischemic stroke patients. Distinction was made between patients recanalized using intraarterial and intravenous methods, as well as those without successful recanalization. For primary quantitative comparison, the Dice metric was computed for each voxel-based tissue outcome prediction and its corresponding follow-up lesion segmentation. It was found that the random forest classifier outperformed the generalized linear model and the k-nearest-neighbor classifier, that normalization did not improve the Dice score of the lesion outcome predictions, and that the models generated lesion outcome predictions with higher Dice scores when trained with balanced datasets. No significant difference was found between the treatment groups (intraarterial vs intravenous) regarding the Dice score of the tissue outcome predictions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3