A dielectric free near field phase transforming structure for wideband gain enhancement of antennas

Author:

Ahmed Foez,Afzal Muhammad U.,Hayat Touseef,Esselle Karu P.,Thalakotuna Dushmantha N.

Abstract

AbstractThe gain of some aperture antennas can be significantly increased by making the antenna near-field phase distribution more uniform, using a phase-transformation structure. A novel dielectric-free phase transforming structure (DF-PTS) is presented in this paper for this purpose, and its ability to correct the aperture phase distribution of a resonant cavity antenna (RCA) over a much wider bandwidth is demonstrated. As opposed to printed multilayered metasurfaces, all the cells in crucial locations of the DF-PTS have a phase response that tracks the phase error of the RCA over a large bandwidth, and in addition have wideband transmission characteristics, resulting in a wideband antenna system. The new DF-PTS, made of three thin metal sheets each containing modified-eight-arm-asterisk-shaped slots, is significantly stronger than the previous DF-PTS, which requires thin and long metal interconnects between metal patches. The third advantage of the new DF-PTS is, all phase transformation cells in it are highly transparent, each with a transmission magnitude greater than − 1 dB at the design frequency, ensuring excellent phase correction with minimal effect on aperture amplitude distribution. With the DF-PTS, RCA gain increases to 20.1 dBi, which is significantly greater than its 10.7 dBi gain without the DF-PTS. The measured 10-dB return loss bandwidth and the 3-dB gain bandwidth of the RCA with DF-PTS are 46% and 12%, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A low-profile 3-D printable metastructure for performance improvement of aperture antennas;Scientific Reports;2024-08-02

2. Dual-Band Printed Near-Field Metasurface With Independent Phase Transformation for Enhanced Antenna Gain;IEEE Antennas and Wireless Propagation Letters;2024-08

3. A Perforated Dielectric Metasurface Using 3-D Printing for Aperture Antenna Performance Improvement;2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT);2024-05-02

4. Novel Dual-Band Phase-Gradient Metascreen and Dual-Band Near-Field Meta-Steering Antennas;IEEE Transactions on Antennas and Propagation;2024-03

5. A Thin Transparent Phase Correction Surface for Patch Antenna Gain Enhancement;2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI);2023-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3