Cellulose-Copper Oxide hybrid nanocomposites membranes for H2S gas detection at low temperatures

Author:

Hittini Waseem,Abu-Hani Ayah F.,Reddy N.,Mahmoud Saleh T.

Abstract

AbstractWe report on novel, sensitive, selective and low-temperature hydrogen sulfide (H2S) gas sensors based on metal-oxide nanoparticles incorporated within polymeric matrix composites. The Copper-Oxide (CuO) nanoparticles were prepared by a colloid microwave-assisted hydrothermal method that enables precise control of nanoparticle size. The sodium carboxymethyl cellulose (CMC) powder with 5% glycerol ionic liquid (IL) was prepared and mixed with different concentrations of CuO NPs (2.5–7.5 wt.%) to produce flexible and semi-conductive polymeric matrix membranes. Each membrane was then sandwiched between a pair of electrodes to produce an H2S gas sensor. The temperature-dependent gas sensing characteristics of the prepared sensors were investigated over the temperature ranges from 40 °C to 80 °C. The sensors exhibited high sensitivity and reasonably fast responses to H2S gas at low working temperatures and at a low gas concentration of 15 ppm. Moreover, the sensors were highly selective to H2S gas, and they showed low humidity dependence, which indicates reliable functioning in humid atmospheres. This organic-inorganic hybrid-materials gas sensor is flexible, with good sensitivity and low power consumption has the potential to be used in harsh environments.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3