In vitro biological and antimicrobial properties of chitosan-based bioceramic coatings on zirconium

Author:

Aktug Salim Levent,Durdu Salih,Kalkan Selin,Cavusoglu Kultigin,Usta Metin

Abstract

AbstractCa-based porous and rough bioceramic surfaces were coated onto zirconium by micro-arc oxidation (MAO). Subsequently, the MAO-coated zirconium surfaces were covered with an antimicrobial chitosan layer via the dip coating method to develop an antimicrobial, bioactive, and biocompatible composite biopolymer and bioceramic layer for implant applications. Cubic ZrO2, metastable Ca0.15Zr0.85O1.85, and Ca3(PO4)2 were detected on the MAO surface by powder-XRD. The existence of chitosan on the MAO-coated Zr surfaces was verified by FTIR. The micropores and thermal cracks on the bioceramic MAO surface were sealed using a chitosan coating, where the MAO surface was porous and rough. All elements such as Zr, O, Ca, P, and C were homogenously distributed across both surfaces. Moreover, both surfaces indicated hydrophobic properties. However, the contact angle of the MAO surface was lower than that of the chitosan-based MAO surface. In vitro bioactivity on both surfaces was investigated via XRD, SEM, and EDX analyses post-immersion in simulated body fluid (SBF) for 14 days. In vitro bioactivity was significantly enhanced on the chitosan-based MAO surface with respect to the MAO surface. In vitro microbial adhesions on the chitosan-based MAO surfaces were lower than the MAO surfaces for Staphylococcus aureus and Escherichia coli.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3