Cognitive map formation in the blind is enhanced by three-dimensional tactile information

Author:

Bleau Maxime,van Acker Camille,Martiniello Natalina,Nemargut Joseph Paul,Ptito Maurice

Abstract

AbstractFor blind individuals, tactile maps are useful tools to form cognitive maps through touch. However, they still experience challenges in cognitive map formation and independent navigation. Three-dimensional (3D) tactile information is thus increasingly being considered to convey enriched spatial information, but it remains unclear if it can facilitate cognitive map formation compared to traditional two-dimensional (2D) tactile information. Consequently, the present study investigated the impact of the type of sensory input (tactile 2D vs. tactile 3D vs. a visual control condition) on cognitive map formation. To do so, early blind (EB, n = 13), late blind (LB, n = 12), and sighted control (SC, n = 14) participants were tasked to learn the layouts of mazes produced with different sensory information (tactile 2D vs. tactile 3D vs. visual control) and to infer routes from memory. Results show that EB manifested stronger cognitive map formation with 3D mazes, LB performed equally well with 2D and 3D tactile mazes, and SC manifested equivalent cognitive map formation with visual and 3D tactile mazes but were negatively impacted by 2D tactile mazes. 3D tactile maps therefore have the potential to improve spatial learning for EB and newly blind individuals through a reduction of cognitive overload. Installation of 3D tactile maps in public spaces should be considered to promote universal accessibility and reduce blind individuals’ wayfinding deficits related to the inaccessibility of spatial information through non-visual means.

Funder

Fonds de Recherche du Québec - Santé

Centre interdisciplinaire en recherche sur le cerveau et l'apprentissage

Vision Health Research Network

Graduate and Postdoctoral Studies, University of Montreal

Canadian Institutes of Health Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3