Microparticles and PD1 interplay added a prognostic impact in treatment outcomes of patients with multiple myeloma

Author:

Zahran Asmaa M.,Zahran Zeinab Albadry M.,Rayan Amal

Abstract

AbstractAlthough multiple myeloma (MM) is still considered as an incurable disease by current standards, the development of several combination therapies, and immunotherapy approaches has raised the hope towards transforming MM into an indolent, chronic disease, and possibly achieving a cure. We tried to shed light on the expression of PD1 and different Microparticles (MPs) in MM and their interplay as a mechanism of resistance to standardized treatments, in addition, find their associations with prognostic factors of symptomatic MM. Thirty patients with newly diagnosed and chemotherapy naïve active MM, along with 19 healthy participants of comparable age and sex were recruited, after diagnosis of MM; blood samples were collected from both patients and controls for flow cytometric detection of CD4+, CD8+, CD4+PD1+, and CD8+PD1+T cells, total MPs, CD138+ MPs, and platelet MPs. MM patients had statistically significant higher levels of TMPs, CD138+ MPs compared to their controls, while PMPs exhibited no significant difference between both groups. Statistically significant higher percentages of CD8+, PD1CD8+, PD1CD4+T cells were detected in patients compared to controls, while the latter group had a significantly higher percentage of CD4+T cells than MM patients, patients who did not achieve complete response, had significantly higher percentages of PMPs, CD138+MPs, PD1+CD8+, PD1+CD4+, and CD8+T cells (cutoff values = 61, 10.6, 13.5, 11.3 and 20.1 respectively), (p-values = 0.002, 0.003, 0.017, 0.001 and 0.008 respectively). Microparticles and PD1 expressions were associated with proliferative potential and resistance to Bortezomib-based treatments, our results suggested that they played a crucial role in myeloma progression.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3