A v-transformed copula-based simulation model for lithological classification in an Indian copper deposit

Author:

Dinda K.,Samanta B.,Chakravarty D.

Abstract

AbstractCopula functions are widely used for modeling multivariate dependence. Since the multivariate data may not necessarily be linear and Gaussian, the copula model is very often brought into the picture for modeling such multivariate phenomena. The lithological classification in spatial domain is a class of problems dealing with categorical variables. A generalized class of copula model is effective for such classification tasks. In this paper, a non-Gaussian copula (v-transformed copula) model has been used for lithotype classification of an Indian copper deposit. Coupling of Markov chain Monte Carlo (MCMC) simulation and copula discriminant function is performed for this purpose. Specifically, four lithotypes, e.g., granite, quartz, basic, and aplite are simulated in the case study deposit. The efficacy of v-transformed copula discriminant function-based simulation is compared with those of Gaussian copula, t copula, and sequential indicator simulations. Finally, the classification accuracy of all the approaches is examined with ground-truth lithological classes obtained from blast hole information. The results show that the v-transformed copula simulation has a relatively higher classification accuracy (76%) than those of Gaussian copula (70%), t copula (69%), and sequential indicator (70%) simulations.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference64 articles.

1. Mackenzie, D. H. & Wilson, G. I. Geological interpretation and geological modelling. In Mineral Resource and Ore Reserve Estimation—The AusIMM Guide to Good Practice 111–118 (The Australasian Institute of Mining and Metallurgy, 2001).

2. Duke, J. H. & Hanna, P. J. Geological interpretation for resource modelling and estimation. In Mineral Resource and Ore Reserve Estimation—The AusIMM Guide to Good Practice 147–156 (2001).

3. Maleki, M., Emery, X. & Mery, N. Indicator variograms as an aid for geological interpretation and modeling of ore deposits. Minerals. 7(12), 241. https://doi.org/10.3390/min7120241 (2017).

4. Journel, A. G. Nonparametric estimation of spatial distributions. J. Int. Assoc. Math. Geol. 15(3), 445–468. https://doi.org/10.1007/BF01031292 (1983).

5. Journal, A. G. & Alabert, F. Non-Gaussian data expansion in the earth sciences. Terra Nova 1(2), 123–134. https://doi.org/10.1111/j.1365-3121.1989.tb00344.x (1989).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3