Pivotal avenue for hybrid electron transport layer-based perovskite solar cells with improved efficiency

Author:

Subudhi Poonam,Punetha Deepak

Abstract

AbstractThis study conducted a simulative analysis of different hybrid perovskite solar cells with various hybrid electron transport layers (ETL) and hole transport layers (HTL). The electron transport layer boosts durability, lowers production costs, increases stability, improves light absorption, and increases efficiency. Hybrid ETLs are taken into consideration to improve the device's performance. The selected hybrid ETLs (PCBM–SnS2, TiO2–SnO2, and PCBM–PCPB) were modeled with four hybrid perovskite absorbers (CsPbI3, FAPbI3, MAPbI3, and FAMAPbI3) and five HTLs (PEDOT: PSS, CuI, Spiro-OMeTAD, CBTS, and NiO). Three sets of solar cells are found to be the most effective configurations after investigating over sixty different combinations of perovskite solar cell architectures. The structures show CBTS as the efficient HTL for FAMAPbI3 with all three hybrid ETLs. Besides, a holistic analysis of the effect of several factors such as the defect density and thickness of the absorber layer, temperature, parasitic resistances, capacitance, Mott–Schottky, impedance, conduction band offset, and current density–voltage and quantum efficiency characteristics is performed. The results show a maximum power conversion efficiency of 25.57%, 26.35%, and 23.36% with PCBM–SnS2, TiO2–SnO2, and PCBM–PCPB respectively. Among the studied hybrid ETLs, perovskite solar cell associated with TiO2–SnO2 has depicted a superior performance (Voc = 1.12 V, Jsc = 26.88 mA/cm2, FF = 87.27%). The efficiency of the perovskite solar cell using this study has been drastically enhanced compared to the previous experimental report. The proposed strategy provides a new avenue for attaining clean energy and allows researchers to pave the way for further design optimization to obtain high-performance solar cell devices.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3