Physics-informed shape optimization using coordinate projection

Author:

Zhang Zhizhou,Lin Chungwei,Wang Bingnan

Abstract

AbstractThe rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural design and analysis. Among various scientific machine learning techniques, physics-informed neural network (PINN) has been one of the most researched subjects, for its ability to incorporate physics prior knowledge into model training. However, the intrinsic continuity requirement of PINN demands the adoption of domain decomposition when multiple materials with distinct properties exist. This greatly complicates the gradient computation of design features, restricting the application of PINN to structural shape optimization. To address this, we present a novel framework that employs neural network coordinate projection for shape optimization within PINN. This technique allows for direct mapping from a standard shape to its optimal counterpart, optimizing the design objective without the need for traditional transition functions or the definition of intermediate material properties. Our method demonstrates a high degree of adaptability, allowing the incorporation of diverse constraints and objectives directly as training penalties. The proposed approach is tested on magnetostatic problems for iron core shape optimization, a scenario typically plagued by the high permeability contrast between materials. Validation with finite-element analysis confirms the accuracy and efficiency of our approach. The results highlight the framework’s capability as a viable tool for shape optimization in complex material design tasks.

Publisher

Springer Science and Business Media LLC

Reference48 articles.

1. Gozalo-Brizuela, R. & Garrido-Merchan, E. C. Chatgpt is not all you need. A state of the art review of large generative ai models. arXiv:2301.04655 (2023).

2. Bommasani, R. et al. On the opportunities and risks of foundation models. arXiv:2108.07258 (2021).

3. Rahimi, M., Moosavi, S. M., Smit, B. & Hatton, T. A. Toward smart carbon capture with machine learning. Cell Rep. Phys. Sci. 2, 569 (2021).

4. Yan, Y. et al. Harnessing the power of machine learning for carbon capture, utilisation, and storage (ccus)-a state-of-the-art review. Energy Environ. Sci. 14, 6122–6157 (2021).

5. Bi, K. et al. Accurate medium-range global weather forecasting with 3d neural networks. Nature 2023, 1–6 (2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3