Predicting the presence of tinnitus using ecological momentary assessments

Author:

Breitmayer Marius,Stach Michael,Kraft Robin,Allgaier Johannes,Reichert Manfred,Schlee Winfried,Probst Thomas,Langguth Berthold,Pryss Rüdiger

Abstract

AbstractMobile applications have gained popularity in healthcare in recent years. These applications are an increasingly important pillar of public health care, as they open up new possibilities for data collection and can lead to new insights into various diseases and disorders thanks to modern data analysis approaches. In this context, Ecological Momentary Assessment (EMA) is a commonly used research method that aims to assess phenomena with a focus on ecological validity and to help both the user and the researcher observe these phenomena over time. One phenomenon that benefits from this capability is the chronic condition tinnitus. TrackYourTinnitus (TYT) is an EMA-based mobile crowdsensing platform designed to provide more insight into tinnitus by repeatedly assessing various dimensions of tinnitus, including perception (i.e., perceived presence). Because the presence of tinnitus is the dimension that is of great importance to chronic tinnitus patients and changes over time in many tinnitus patients, we seek to predict the presence of tinnitus based on the not directly related dimensions of mood, stress level, arousal, and concentration level that are captured in TYT. In this work, we analyzed a dataset of 45,935 responses to a harmonized EMA questionnaire using different machine learning techniques. In addition, we considered five different subgroups after consultation with clinicians to further validate our results. Finally, we were able to predict the presence of tinnitus with an accuracy of up to 78% and an AUC of up to 85.7%.

Funder

Universität Ulm

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3