Frequency-dependent drug screening using optogenetic stimulation of human iPSC-derived cardiomyocytes

Author:

Lapp Hendrik,Bruegmann TobiasORCID,Malan Daniela,Friedrichs Stephanie,Kilgus Carsten,Heidsieck Alexandra,Sasse PhilippORCID

Abstract

AbstractSide effects on cardiac ion channels are one major reason for new drugs to fail during preclinical evaluation. Herein we propose a simple optogenetic screening tool measuring extracellular field potentials (FP) from paced cardiomyocytes to identify drug effects over the whole physiological heart range, which is essential given the rate-dependency of ion channel function and drug action. Human induced pluripotent stem cell-derived cardiomyocytes were transduced with an adeno-associated virus to express Channelrhodopsin2 and plated on micro-electrode arrays. Global pulsed illumination (470 nm, 1 ms, 0.9 mW/mm2) was applied at frequencies from 1 to 2.5 Hz, which evoked FP simultaneously in all cardiomyocytes. This synchronized activation allowed averaging of FP from all electrodes resulting in one robust FP signal for analysis. Field potential duration (FPD) was ~25% shorter at 2.5 Hz compared to 1 Hz. Inhibition of hERG channels prolonged FPD only at low heart rates whereas Ca2+ channel block shortened FPD at all heart rates. Optogenetic pacing also allowed analysis of the maximum downstroke velocity of the FP to detect drug effects on Na+ channel availability. In principle, the presented method is well scalable for high content cardiac toxicity screening or personalized medicine for inherited cardiac channelopathies.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3