Author:
Efange Noella M.,Lobe Maloba M. M.,Keumoe Rodrigue,Ayong Lawrence,Efange Simon M. N.
Abstract
AbstractMolecular hybridization of privileged scaffolds may generate novel antiplasmodial chemotypes that display superior biological activity and delay drug resistance. In the present study, we describe the in vitro activities and mode of action of 3′,4′-dihydro-2′H-spiro[indoline-3,1′-isoquinolin]-2-ones, a novel class of spirofused tetrahydroisoquinoline–oxindole hybrids, as novel antimalarial agents. Whole cell phenotypic screening of these compounds identified (14b), subsequently named (±)-moxiquindole, as the most potent compound in the current series with equipotent antiplasmodial activity against both chloroquine sensitive and multidrug resistant parasite strains with good selectivity. The compound was active against all asexual stages of the parasite including inhibition of merozoite egress. Additionally, (±)-moxiquindole exhibited significant inhibitory effects on hemoglobin degradation, and disrupted vacuolar lipid dynamics. Taken together, our data confirm the antiplasmodial activity of (±)-moxiquindole, and identify 3′4′-dihydro-2′H-spiro[indoline-3,1′-isoquinolin]-2-ones as a novel class of antimalarial agents with multiple modes of action.
Funder
Higher Education Research Modernization Scheme
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献