Numerical approach towards gyrotactic microorganisms hybrid nanoliquid flow with the hall current and magnetic field over a spinning disk

Author:

Lv Yu-Pei,Algehyne Ebrahem A.,Alshehri Maryam G.,Alzahrani Ebraheem,Bilal Muhammad,Khan Muhammad Altaf,Shuaib Muhammad

Abstract

AbstractThe article explores the effect of Hall current, thermal radiation, and magnetic field on hybrid nanofluid flow over the surface of a spinning disk. The motive of the present effort is to upgrade the heat transmission rate for engineering and industrial purposes. The hybrid nanofluids as compared to the conventional fluids have higher thermal properties. Therefore, in the present article, a special class of nanoparticles known as carbon nanotubes (CNTs) and iron ferrite nanoparticles are used in the base fluid. The system of modeled equations is depleted into dimensionless differential equations through similarity transformation. The transform equations are further solved through the Parametric Continuation method (PCM). For the parametric study, the physical parameters impact on velocity, energy, mass transmission, and motile microorganism’s concentration profiles have been sketched. The obtained results are compared with the existing literature, which shows the best settlement. It concluded that the heat transmission rate reduces for Hall current and rises with radiative parameter. The results perceived that the addition of CNTs in carrier fluid is more efficacious than any other types of nanoparticles, due to its C–C bond. CNTs nanofluid can be more functionalized for the desired achievement, which can be utilized for a variety of applications by functionalization of non-covalent and covalent modification.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3