PtWRKY2, a WRKY transcription factor from Pinellia ternata confers heat tolerance in Arabidopsis

Author:

Liu Dan,Cui Wanning,Bo Chen,Wang Ru,Zhu Yanfang,Duan Yongbo,Wang Dexin,Xue Jianping,Xue Tao

Abstract

AbstractHigh temperatures are a major stress factor that limit the growth of Pinellia ternata. WRKY proteins widely distribute in plants with the important roles in plant growth and stress responses. However, WRKY genes have not been identified in P. ternata thus far. In this study, five PtWRKYs with four functional subgroups were identified in P. ternata. One group III WRKY transcription factor, PtWRKY2, was strongly induced by high temperatures, whereas the other four PtWRKYs were suppressed. Analysis of transcription factor characteristics revealed that PtWRKY2 localized to the nucleus and specifically bound to W-box elements without transcriptional activation activity. Overexpression of PtWRKY2 increased the heat tolerance of Arabidopsis, as shown by the higher percentage of seed germination and survival rate, and the longer root length of transgenic lines under high temperatures compared to the wild-type. Moreover, PtWRKY2 overexpression significantly decreased reactive oxygen species accumulation by increasing the catalase, superoxide dismutase, and peroxidase activities. Furthermore, the selected heat shock-associated genes, including five transcription factors (HSFA1A, HSFA7A, bZIP28, DREB2A, and DREB2B), two heat shock proteins (HSP70 and HSP17.4), and three antioxidant enzymes (POD34, CAT1, and SOD1), were all upregulated in transgenic Arabidopsis. The study identifies that PtWRKY2 functions as a key transcriptional regulator in the heat tolerance of P. ternata, which might provide new insights into the genetic improvement of P. ternata.

Funder

National Engineering Laboratory of Crop Stress Resistance Breeding

This work was supported by the National Natural Science Foundation of China

Excellent Scientific Research and Innovation Team of University in Anhui Province

the National Natural Science Foundation of China

The University Synergy Innovation Program of Anhui Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3