Crystal plasticity simulations with representative volume element of as-build laser powder bed fusion materials

Author:

Bulgarevich Dmitry S.ORCID,Nomoto Sukeharu,Watanabe Makoto,Demura Masahiko

Abstract

AbstractAdditive manufacturing of as-build metal materials with laser powder bed fusion typically leads to the formations of various chemical phases and their corresponding microstructure types. Such microstructures have very complex shape and size anisotropic distributions due to the history of the laser heat gradients and scanning patterns. With higher complexity compared to the post-heat-treated materials, the synthetic volume reconstruction of as-build materials for accurate modelling of their mechanical properties is a serious challenge. Here, we present an example of complete workflow pipeline for such nontrivial task. It takes into account the statistical distributions of microstructures: object sizes for each phase, several shape parameters for each microstructure type, and their morphological and crystallographic orientations. In principle, each step in the pipeline, including the parameters in the crystal plasticity model, can be fine-tuned to achieve suitable correspondence between experimental and synthetic microstructures as well as between experimental stress–strain curves and simulated results. To our best knowledge, this work represents an example of the most challenging synthetic volume reconstruction for as-build additive manufacturing materials to date.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3