Resin-based dental pulp capping restoration enclosing silica and portlandite nanoparticles from natural resources

Author:

Elbatanony Mai M.,Safwat Engie M.,El-Sherif Sammar,Hassan Mohammad L.

Abstract

AbstractNatural-based materials represent green choices for biomedical applications. In this study, resin pulp capping restoration enclosing strengthening silica and bioactive portlandite nanofillers were prepared from industrial wastes. Silica nanoparticles were isolated from rice husk by heat treatment, followed by dissolution/precipitation treatment. Portlandite nanoparticles were prepared by calcination of carbonated lime waste followed by ultrasonic treatment. Both were characterized using x-ray diffraction, energy dispersive x-ray, and transmission electron microscopy. For preparing pulp capping restoration, silica (after silanization) and/or portlandite nanoparticles were mixed with 40/60 weight ratio of bisphenol A-glycidyl methacrylate and triethylene glycol dimethacrylate. Groups A, B, and C enclosing 50 wt.% silica, 25 wt.% silica + 25 wt.% portlandite, and 50 wt.% portlandite, respectively, were prepared. All groups underwent microhardness, compressive strength, calcium release, pH, and apatite forming ability inspection in comparison to mineral trioxide aggregate (MTA) positive control. In comparison to MTA, all experimental groups showed significantly higher compressive strength, group B showed comparable microhardness, and group C showed significantly higher calcium release. Groups B and C showed prominent hydroxyapatite formation. Thus, the preparation of economic, silica-fortified, bioactive pulp capping material from under-utilized agricultural residues (rice husk) and zero-value industrial waste (carbonated lime from sugar industry) could be achieved.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3