A novel score for early prediction of urinary tract infection risk in patients with acute ischemic stroke: a nomogram-based retrospective cohort study

Author:

Zhao Qinqin,Feng Pinpin,Zhu Jun,Wang Yunling,Zhou Xiaojuan,Xia Zhongni,Wang Danqing,He Yueyue,Wang Pei,Li Xiang

Abstract

AbstractThis study aimed to construct and externally validate a user-friendly nomogram-based scoring model for predicting the risk of urinary tract infections (UTIs) in patients with acute ischemic stroke (AIS). A retrospective real-world cohort study was conducted on 1748 consecutive hospitalized patients with AIS. Out of these patients, a total of 1132 participants were ultimately included in the final analysis, with 817 used for model construction and 315 utilized for external validation. Multivariate regression analysis was applied to develop the model. The discriminative capacity, calibration ability, and clinical effectiveness of the model were evaluated. The overall incidence of UTIs was 8.13% (92/1132), with Escherichia coli being the most prevalent causative pathogen in patients with AIS. After multivariable analysis, advanced age, female gender, National Institute of Health Stroke Scale (NIHSS) score ≥ 5, and use of urinary catheters were identified as independent risk factors for UTIs. A nomogram-based SUNA model was constructed using these four factors (Area under the receiver operating characteristic curve (AUC) = 0.810), which showed good discrimination (AUC = 0.788), calibration, and clinical utility in the external validation cohort. Based on four simple and readily available factors, we derived and externally validated a novel and user-friendly nomogram-based scoring model (SUNA score) to predict the risk of UTIs in patients with AIS. The model has a good predictive value and provides valuable information for timely intervention in patients with AIS to reduce the occurrence of UTIs.

Funder

Medical Science and Technology Project of Zhejiang Province

Zhejiang Pharmaceutical Association

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3