Unsupervised real-world knowledge extraction via disentangled variational autoencoders for photon diagnostics

Author:

Hartmann Gregor,Goetzke Gesa,Düsterer Stefan,Feuer-Forson Peter,Lever Fabiano,Meier David,Möller Felix,Vera Ramirez Luis,Guehr Markus,Tiedtke Kai,Viefhaus Jens,Braune Markus

Abstract

AbstractWe present real-world data processing on measured electron time-of-flight data via neural networks. Specifically, the use of disentangled variational autoencoders on data from a diagnostic instrument for online wavelength monitoring at the free electron laser FLASH in Hamburg. Without a-priori knowledge the network is able to find representations of single-shot FEL spectra, which have a low signal-to-noise ratio. This reveals, in a directly human-interpretable way, crucial information about the photon properties. The central photon energy and the intensity as well as very detector-specific features are identified. The network is also capable of data cleaning, i.e. denoising, as well as the removal of artefacts. In the reconstruction, this allows for identification of signatures with very low intensity which are hardly recognisable in the raw data. In this particular case, the network enhances the quality of the diagnostic analysis at FLASH. However, this unsupervised method also has the potential to improve the analysis of other similar types of spectroscopy data.

Funder

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3