Coherent control of light-induced torque on four-level tripod atom systems

Author:

Mehdinejad Ali

Abstract

AbstractThis paper investigates the manipulation of induced torque on a four-level tripod atom system through the interaction with two vortex probe beams featuring spatial inhomogeneity, along with a non-vortex control beam. The study explores both the linear and nonlinear regimes of torque induction. In the linear regime, where the intensity of the vortex beams is weaker than that of the control field, effective control over the induced torque is demonstrated by adjusting parameters such as magnetic field strength, control field intensity, detuning, and dephasing terms between relevant atomic levels. The analysis highlights the significant contribution of the Zeeman shift-induced magnetic field, which enhances the torque and exhibits a distinct sharp peak. Furthermore, higher-order contributions to the induced torque are discussed as the intensity of the probe fields approaches that of the control field, resulting in further enhancement of the induced torque. These findings offer opportunities for precise control over the rotational motion of atoms within the system, with potential applications in precision measurement, quantum information processing, and quantum control.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3