Effect of sample density in prompt γ-ray analysis

Author:

Maeda Makoto,Segawa Mariko,Toh Yosuke,Endo Shunsuke,Nakamura Shoji,Kimura Atsushi

Abstract

AbstractA high-accuracy analytical method is broadly required to obtain reliable research results. Thus, prompt γ-ray analysis (PGA), one of the most accurate non-destructive analytical methods, has been employed in various fields. However, the measurement accuracy of PGA is also known to degrade in hydrogenous samples. The degradation is caused by variation in the measurement sensitivity (counts per milligram) following the change in neutron energy due to scattering with hydrogen nucleus. Number of scatterings is well known to depend on the hydrogen content in a sample. However, considering multiple scatterings, hydrogen density, which has not been taken into account as yet, may also lead to the accuracy degradation. Here, we show the effect of the hydrogen density in PGA by evaluating the measurement sensitivity of samples with the same hydrogen content and different densities. We find that the measurement sensitivity varies by more than 30% depending on the hydrogen density even at the same hydrogen content. The variation is a particularly serious problem for PGA requiring a few percent accuracy in most cases. Additionally, although the variation is apparently observed in hydrogenous samples, the similar phenomenon can occur in other nuclides with a large scattering cross section; it may affect nuclear cross-section measurements using neutrons in such fields as astrophysics and nuclear energy.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of correction method for sample density effect on PGA;Journal of Radioanalytical and Nuclear Chemistry;2023-05-26

2. Quantitative, non-destructive elemental composition analysis of 3D-structured samples;Journal of Analytical Atomic Spectrometry;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3