Direct Z-scheme heterojunction impregnated MoS2–NiO–CuO nanohybrid for efficient photocatalyst and dye-sensitized solar cell

Author:

Dharmalingam Karthigaimuthu,Bojarajan Arjun Kumar,Gopal Ramalingam,Thangavel Elangovan,Burhan Al Omari Salah Addin,Sangaraju Sambasivam

Abstract

AbstractIn this present work, the preparation of ternary MoS2–NiO–CuO nanohybrid by a facile hydrothermal process for photocatalytic and photovoltaic performance is presented. The prepared nanomaterials were confirmed by physio-chemical characterization. The nanosphere morphology was confirmed by electron microscopy techniques for the MoS2–NiO–CuO nanohybrid. The MoS2–NiO–CuO nanohybrid demonstrated enhanced crystal violet (CV) dye photodegradation which increased from 50 to 95% at 80 min; The degradation of methyl orange (MO) dye increased from 56 to 93% at 100 min under UV–visible light irradiation. The trapping experiment was carried out using different solvents for active species and the Z-Scheme photocatalytic mechanism was discussed in detail. Additionally, a batch series of stability experiments were carried out to determine the photostability of materials, and the results suggest that the MoS2–NiO–CuO nanohybrid is more stable even after four continuous cycles of photocatalytic activity. The MoS2–NiO–CuO nanohybrid delivers photoconversion efficiency (4.92%) explored efficacy is 3.8 times higher than the bare MoS2 (1.27%). The overall results indicated that the MoS2–NiO–CuO nanohybrid nanostructure could be a potential candidate to be used to improve photocatalytic performance and DSSC solar cell applications as well.

Funder

UAEU-AUA joint research program

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3