Theoretical investigations on mechanisms and kinetics of the CH3CFClO2· with ClO· reaction in the atmosphere

Author:

Zhang Yunju,He Bing,Sun Yuxi

Abstract

AbstractThe singlet and triplet potential energy surfaces of the ClO• radical reaction with the CH3CFClO2• radical have been investigated at the CCSD(T)/cc-pVTZ level based on the optimized geometries at the B3LYP/6–311++G(d,p) level. On the singlet potential energy surfaces (PES), the possible reaction involves association-dissociation, direct H-abstraction and Nucleophilic Substitution 2 (SN2) mechanisms. On the triplet PES, SN2 displacement and direct H-abstraction reaction pathways have been investigated, which are less competitive compared with the reaction pathways on the singlet PES. The rate constants have been calculated at 10–10 to 1010 atm and 200–3,000 K by Rice–Ramsperger–Kassel–Marcus (RRKM) theory for the important product pathways. At 200–800 K, IM1 produced (CH3CFClOOOCl) by collisonal deactivation is dominant; at high temperatures, the production P1 (CH3CFO + ClOOCl) becomes dominate. The calculated rate constants for CH3CFClO2• + ClO• are good agreement with the available experimental value. The atmospheric lifetime of CH3CFClO2• in ClO• is around 3.27 h. TD-DFT computations imply that IM1 (CH3CFClOOOCl), IM2 (CH3CFClOOClO) and IM3 (CH3CFClOClO2) will photolyze under the sunlight.

Funder

The Natural Science Foundations of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3