The profiles of miR-4510 expression level in breast cancer

Author:

Majed Sevan Omer,Mustafa Suhad AsadORCID

Abstract

AbstractMicroRNA that is abnormally produced in breast cells can disrupt biological processes, which can lead to cancer. This study aims to screen differentially expressed genes (DEGs) and ncRNAs (DEncRNAs) in the formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer (BC) as compared with the normal adjacent tissues (NAT), and identify miR-4510 as a novel biomarker of BC. This study looked at differentially expressed genes (DEGs) using MACE-Seq and differentially expressed ncRNAs (DEncRNAs) using the small RNA-Seq. Real-time qPCR was used to determine the level of expression of miR-4510. In this study, MACE-Seq results showed that 26,795 genes, with a p-value < 0.05, were differentially expressed in BC paraffin tissues as compared with NAT. Small RNA-Seq results revealed that 1326 ncRNAs, with a p-value < 0.05, were differentially expressed. We confirmed that miR-4510 was significantly down-expressed (p-value = 0.001) by qRT-PCR in the paraffin tissue of 120 BC patients. Based on eleven computational prediction programs, TP53, TP53INP1, MMP11, and COL1A1 for the miR-4510 were identified as miR-4510 targets. The MACE-seq result showed that the gene of TP53 (p-value = 0.001) and TP53INP1 (p-value = 0.02) was significantly down-regulated, but the gene of MMP11 (p-value = 0.004) and COL1A1 (p-value = 0.0001) was significantly over-expressed in 20 paired specimens of the BC and NAT. We discovered that a single SNP inside the miR-4510 binding site occurred only in BC, in which Guanine (G) changed into Adenine (A). Two SNPs outside the miR-4510 binding site occurred, and Guanine (G) in both BC and NAT was changed into Thymine (T), as compared to the reference sequence (RefSeq). Overall, our results suggested that miR-4510 functions as a tumor suppressor in the BC. Mir-4510 may act as a tumor suppressor, however additional experimental data is needed to corroborate these assumptions and can be exploited as a biomarker for BC.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3