Author:
Basudan Aisha M.,Aziz Mohammad Azhar,Yang Yanqi
Abstract
AbstractMandibular condylar cartilage (MCC) is a multi-zonal heterogeneous fibrocartilage containing different types of cells, but the factors/mechanisms governing the phenotypic transition across the zones have not been fully understood. The reliability of molecular studies heavily rely on the procurement of pure cell populations from the heterogeneous tissue. We used a combined laser-capture microdissection and microarray analysis approach which allowed identification of differential zone-specific gene expression profiling and altered pathways in the MCC of 5-week-old rats. The bioinformatics analysis demonstrated that the MCC cells clearly exhibited distinguishable phenotypes from the articular chondrocytes. Additionally, a set of genes has been determined as potential markers to identify each MCC zone individually; Crab1 gene showed the highest enrichment while Clec3a was the most downregulated gene at the superficial layer, which consists of fibrous (FZ) and proliferative zones (PZ). Ingenuity Pathway Analysis revealed numerous altered signaling pathways; Leukocyte extravasation signaling pathway was predicted to be activated at all MCC zones, in particular mature and hypertrophic chondrocytes zones (MZ&HZ), when compared with femoral condylar cartilage (FCC). Whereas Superpathway of Cholesterol Biosynthesis showed predicted activation in both FZ and PZ as compared with deep MCC zones and FCC. Determining novel zone-specific differences of large group of potential genes, upstream regulators and pathways in healthy MCC would improve our understanding of molecular mechanisms on regional (zonal) basis, and provide new insights for future therapeutic strategies.
Funder
Dr. Vincent Leung sponsored funding awarded to PDO, Faculty of Dentistry, The University of Hong Kong.
Publisher
Springer Science and Business Media LLC
Reference64 articles.
1. Yoshida, M., Zea-Aragon, Z., Ohtsuki, K., Ohnishi, M. & Ohno, S. Ultrastructural study of upper surface layer in rat mandibular condylar cartilage by quick-freezing method. Histol. Histopathol. 19(4), 1033–1041 (2004).
2. Milam, S. B. Pathogenesis of degenerative temporomandibular joint arthritides. Odontology 93(1), 7–15 (2005).
3. Murphy, M. K., MacBarb, R. F., Wong, M. E. & Athanasiou, K. A. Temporomandibular disorders: A review of etiology, clinical management, and tissue engineering strategies. Int. J. Oral Maxillofac. Implants 28(6), e393-414 (2013).
4. Zarb, G. A. & Carlsson, G. E. Temporomandibular disorders: Osteoarthritis. J. Orofac. Pain 13(4), 295–306 (1999).
5. Tanaka, E., Detamore, M. S. & Mercuri, L. G. Degenerative disorders of the temporomandibular joint: Etiology, diagnosis, and treatment. J. Dent. Res. 87(4), 296–307 (2008).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献