Representational momentum of biological motion in full-body, point-light and single-dot displays

Author:

Zucchini Elena,Borzelli Daniele,Casile Antonino

Abstract

AbstractObserving the actions of others triggers, in our brain, an internal and automatic simulation of its unfolding in time. Here, we investigated whether the instantaneous internal representation of an observed action is modulated by the point of view under which an action is observed and the stimulus type. To this end, we motion captured the elliptical arm movement of a human actor and used these trajectories to animate a photorealistic avatar, a point-light stimulus or a single dot rendered either from an egocentric or an allocentric point of view. Crucially, the underlying physical characteristics of the movement were the same in all conditions. In a representational momentum paradigm, we then asked subjects to report the perceived last position of an observed movement at the moment in which the stimulus was randomly stopped. In all conditions, subjects tended to misremember the last configuration of the observed stimulus as being further forward than the veridical last showed position. This misrepresentation was however significantly smaller for full-body stimuli compared to point-light and single dot displays and it was not modulated by the point of view. It was also smaller when first-person full body stimuli were compared with a stimulus consisting of a solid shape moving with the same physical motion. We interpret these findings as evidence that full-body stimuli elicit a simulation process that is closer to the instantaneous veridical configuration of the observed movements while impoverished displays (both point-light and single-dot) elicit a prediction that is further forward in time. This simulation process seems to be independent from the point of view under which the actions are observed.

Funder

Fundação Bial

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3