Controlling biodiversity impacts of future global hydropower reservoirs by strategic site selection

Author:

Dorber Martin,Arvesen Anders,Gernaat David,Verones Francesca

Abstract

AbstractFurther reservoir-based hydropower development can contribute to the United Nations’ sustainable development goals (SDGs) on affordable and clean energy, and climate action. However, hydropower reservoir operation can lead to biodiversity impacts, thus interfering with the SDGs on clean water and life on land. We combine a high-resolution, location-specific, technical assessment with newly developed life cycle impact assessment models, to assess potential biodiversity impacts of possible future hydropower reservoirs, resulting from land occupation, water consumption and methane emissions. We show that careful selection of hydropower reservoirs has a large potential to limit biodiversity impacts, as for example, 0.3% of the global hydropower potential accounts for 25% of the terrestrial biodiversity impact. Local variations, e.g. species richness, are the dominant explanatory factors of the variance in the quantified biodiversity impact and not the mere amount of water consumed, or land occupied per kWh. The biodiversity impacts are mainly caused by land occupation and water consumption, with methane emissions being much less important. Further, we indicate a trade-off risk between terrestrial and aquatic biodiversity impacts, as due to the weak correlation between terrestrial and aquatic impacts, reservoirs with small aquatic biodiversity impacts tend to have larger terrestrial impacts and vice versa.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference93 articles.

1. Bogdanov, D. et al. Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat. Commun. 10, 1077. https://doi.org/10.1038/s41467-019-08855-1 (2019).

2. UNEP. Green Energy Choices: The benefits, risks and trade-offs of low-carbon technologies for electricity production. Report of the International Resource Panel (2016).

3. United Nations. Transforming our world: The 2030 agenda for sustainable development—A/RES/70/1. (2015).

4. Intergovernmental Panel on Climate Change. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. (2018).

5. Gernaat, D. E. H. J., Bogaart, P. W., Vuuren, D. P. V., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nature Energy 2, 821–828. https://doi.org/10.1038/s41560-017-0006-y (2017).

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3