A numerical study of spatio-temporal COVID-19 vaccine model via finite-difference operator-splitting and meshless techniques

Author:

Khan Arshad A.,Ullah Saif,Altanji Mohamed,Amin Rohul,Haider Nadeem,Alshehri Ahmed,Riaz Muhammad Bilal

Abstract

AbstractIn this paper, a new spatio-temporal model is formulated to study the spread of coronavirus infection (COVID-19) in a spatially heterogeneous environment with the impact of vaccination. Initially, a detailed qualitative analysis of the spatio-temporal model is presented. The existence, uniqueness, positivity, and boundedness of the model solution are investigated. Local asymptotical stability of the diffusive COVID-19 model at steady state is carried out using well-known criteria. Moreover, a suitable nonlinear Lyapunov functional is constructed for the global asymptotical stability of the spatio-temporal model. Further, the model is solved numerically based on uniform and non-uniform initial conditions. Two different numerical schemes named: finite difference operator-splitting and mesh-free operator-splitting based on multi-quadratic radial basis functions are implemented in the numerical study. The impact of diffusion as well as some pharmaceutical and non-pharmaceutical control measures, i.e., reducing an effective contact causing infection transmission, vaccination rate and vaccine waning rate on the disease dynamics is presented in a spatially heterogeneous environment. Furthermore, the impact of the  aforementioned interventions is investigated with and without diffusion on the incidence of disease. The simulation results conclude that the random motion of individuals has a significant impact on the disease dynamics and helps in setting a better control strategy for disease eradication.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3