An allometric model-based approach for estimating biomass in seven Indian bamboo species in western Himalayan foothills, India

Author:

Kaushal R.,Islam S.,Tewari Salil,Tomar J. M. S.,Thapliyal S.,Madhu M.,Trinh T. L.,Singh Tarun,Singh Avnindra,Durai J.

Abstract

AbstractThe rapid growth rate, high biomass production, and annual harvesting make bamboo a suitable species for commercial production. Allometric equations for many broadleaf and conifer tree species are available. However, knowledge of biomass production and allometric equations of bamboos is limited. This study aims to develop species- specific allometric models for predicting biomass and synthetic height values as a proxy variable for seven bamboo species in Himalayan foothills. Two power form-based allometric models were used to predict aboveground and culm biomass using diameter at breast height (D) alone and D combined with culm height (H) as an independent variable. This study also extended to establishing an H–D allometric model that can be used to generate synthetic H values as a proxy to missing H. In the seven bamboo species studied, among three major biomass components (culm, branch and foliage), culm is the most important component with the highest share (69.56–78.71%). The distribution of percentage (%) share of culm, branch and foliage to above-ground fresh weight varies significantly between different bamboo species. D. hamiltonii has the highest productivity for above-ground biomass components. Ratio of dry to fresh weight of seven bamboo species was estimated for culm, branch, foliage and above-ground biomass to convert fresh weight to dry weight.

Funder

CGIAR Research Program on Forests, Trees and Agroforestry

National Bamboo Mission, New Delhi

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference80 articles.

1. Vorontsova, M. S., Clark, L. G., Dransfield, J., Govaerts, R. H. A. & Baker, W. J. World Checklist of Bamboos and Rattans 102 (Science Press, 2017).

2. Lobovikov, M., Paudel, S., Ball, L., Piazza, M., Guardia, M., Ren, H., Russo, L. & Wu, J. World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005. Food & Agriculture Org., (2007).

3. FAO. Global Forest Resources Assessment 2020: Main report, Rome. Accessed 18 Nov 2021. https://www.fao.org/3/ca9825en/ca9825en.pdf. https://doi.org/10.4060/ca9825en (2020).

4. ISFR http://www.indiaenvironmentportal.org.in/files/file/isfr-fsi-vol1.pdf (Accessed November 18 2021) (2019).

5. Salam, K. Connecting the poor: bamboo, problems and prospect. South Asia Bamboo Foundation (SABF) (2013) retrieved 17 December 2013 from jeevika.org/bamboo/2g-article-fornbda.docx.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3