Dual adversarial deconfounding autoencoder for joint batch-effects removal from multi-center and multi-scanner radiomics data

Author:

Cavinato Lara,Massi Michela Carlotta,Sollini Martina,Kirienko Margarita,Ieva Francesca

Abstract

AbstractMedical imaging represents the primary tool for investigating and monitoring several diseases, including cancer. The advances in quantitative image analysis have developed towards the extraction of biomarkers able to support clinical decisions. To produce robust results, multi-center studies are often set up. However, the imaging information must be denoised from confounding factors—known as batch-effect—like scanner-specific and center-specific influences. Moreover, in non-solid cancers, like lymphomas, effective biomarkers require an imaging-based representation of the disease that accounts for its multi-site spreading over the patient’s body. In this work, we address the dual-factor deconfusion problem and we propose a deconfusion algorithm to harmonize the imaging information of patients affected by Hodgkin Lymphoma in a multi-center setting. We show that the proposed model successfully denoises data from domain-specific variability (p-value < 0.001) while it coherently preserves the spatial relationship between imaging descriptions of peer lesions (p-value = 0), which is a strong prognostic biomarker for tumor heterogeneity assessment. This harmonization step allows to significantly improve the performance in prognostic models with respect to state-of-the-art methods, enabling building exhaustive patient representations and delivering more accurate analyses (p-values < 0.001 in training, p-values < 0.05 in testing). This work lays the groundwork for performing large-scale and reproducible analyses on multi-center data that are urgently needed to convey the translation of imaging-based biomarkers into the clinical practice as effective prognostic tools. The code is available on GitHub at this https://github.com/LaraCavinato/Dual-ADAE.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3