Estimating generation time of SARS-CoV-2 variants in Italy from the daily incidence rate

Author:

Lippiello Eugenio,Petrillo Giuseppe,Baccari Silvio,de Arcangelis Lucilla

Abstract

AbstractThe identification of the transmission parameters of a virus is fundamental to identify the optimal public health strategy. These parameters can present significant changes over time caused by genetic mutations or viral recombination, making their continuous monitoring fundamental. Here we present a method, suitable for this task, which uses as unique information the daily number of reported cases. The method is based on a time since infection model where transmission parameters are obtained by means of an efficient maximization procedure of the likelihood. Applying the method to SARS-CoV-2 data in Italy, we find an average generation time $${\overline{z}}=3.2 \pm 0.8$$ z ¯ = 3.2 ± 0.8 days, during the temporal window when the majority of infections can be attributed to the Omicron variants. At the same time we find a significantly larger value $${\overline{z}}=6.2\pm 1.1$$ z ¯ = 6.2 ± 1.1 days, in the temporal window when spreading was dominated by the Delta variant. We are also able to show that the presence of the Omicron variant, characterized by a shorter $${{\overline{z}}}$$ z ¯ , was already detectable in the first weeks of December 2021, in full agreement with results provided by sequences of SARS-CoV-2 genomes reported in national databases. Our results therefore show that the novel approach can indicate the existence of virus variants, resulting particularly useful in situations when information about genomic sequencing is not yet available. At the same time, we find that the standard deviation of the generation time does not significantly change among variants.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3