Research on rockburst prevention systems based on the attenuation law of coal and rock vibration wave energy

Author:

Rong Hai,Wang Zijian,Konicek Petr,Pan Liting,Tang Guoshui,Kajzar Vlastimil,Wang Yadi

Abstract

AbstractDuring the coal and rock mass fracture process, elastic properties are released and vibration waves are radiated outward. The energy attenuation characteristics of these waves can describe the cumulative damage and elastic energy accumulation of the mass. To investigate coal and rock mass failure characteristics and energy attenuation rules during rockburst, numerical simulation and laboratory testing were utilized to study the energy transfer laws under various parameters. Six variables, including elastic modulus, Poisson’s ratio, bulk density, cohesion, internal friction angle, and void ratio, were selected to simulate the rockburst energy release process under different parameter combinations by adding surface pressure to the model. The coal and rock mass energy attenuation coefficient was obtained by fitting the node energy straight line using the least squares method. The six variables’ influence on vibration wave energy transfer was obtained using analytic hierarchy process program written in MATLAB, and a comprehensive calculation formula was proposed. Using the energy attenuation coefficient, the rock layer energy diffusion distance was calculated and compared with the roof collapse rock layer step distance, resulting in the roof rock layer cutting distance determination. By roof rock strata precutting, rockburst occurrence can be prevented, ensuring safe and efficient coal mine production.

Funder

National Natural Science Foundation of China Project

Basic scientific research project (youth project) of Liaoning Provincial Department of Education in 2022

Engineering Laboratory of Deep Mine Rockburst Disaster Assessment Open Project

Liaoning Natural Science Foundation Program Guidance Plan

Liaoning Provincial Department of Education Project

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3