Evolution of field induced magnetic phase attributed to higher order magnetic moments in TbVO4

Author:

Ranaut Dheeraj,Mukherjee K.

Abstract

AbstractStudy of quantum magnetism in rare earth orthovanadates (RVO4, R = rare earth) is a topic which is currently being investigated by the condensed matter physicists. In this work, through both experimental and theoretical tools, we report the presence of field induced magnetic phase, attributed to fifth order susceptibility, in TbVO4, at low temperatures. The structural transition reported around 31 K, results in the formation of pseudospin—$${\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}$$ 1 / 2 doublet ground state separated by an energy δ. Temperature dependent heat capacity indicates toward an increment in δ, on application of magnetic fields. Above 10 kOe, the Zeeman energy associated with magnetic anisotropy strengthens, resulting in an enhanced splitting of the pseudo-doublet ground state. This increased splitting stabilizes the magnetic phase associated with higher order moments. These observations are further supported by our theoretical model to evaluate δ, as a function of applied field. Our study provides a platform to study the possible presence of higher order moments in other Jahn–Teller systems.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3