Color stability, surface, and physicochemical properties of three-dimensional printed denture base resin reinforced with different nanofillers

Author:

Kim Min-Chae,Byeon Da-Jung,Jeong Eo-Jin,Go Hye-Bin,Yang Song-Yi

Abstract

AbstractVarious materials have been introduced for the three-dimensional (3D) printing of dentures. In this study, the color stability and surface and physicochemical properties of 3D-printed denture base resins with four types of nanofiller particles were evaluated. Al2O3, ZnO, CeZr, and SiO2 nanofillers were added to a 3D printable denture base-resin matrix and subjected to digital light processing. The specimens were immersed in Coke, coffee, black tea, or distilled water for 6 days. For the assessment of color differences, 6 samples were analyzed using a spectrophotometer. In a separate investigation, surface properties of 10 samples were examined, while a different set of 6 samples was used to analyze water sorption and solubility. All experimental groups exhibited higher color stability in Coke than the control group. However, the groups containing ZnO and CeZr had lower color stability in coffee and black tea than the control group. Moreover, they had agglomerated nanofillers and lower gloss than the control group. Compared with that of the control group, the contact angle of the CeZr group and microhardness of the ZnO group were not significantly different. Water sorption was higher in the Al2O3 group, whereas the solubility of the experimental and control groups was not statistically significant. The results demonstrated the significant effect of ZnO and CeZr nanofillers on the color stability of the dentures when exposed to discoloring beverages. These results will facilitate the development of fillers that enhance the resistance of 3D printed denture base resins to discoloration in the oral environment.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3