Design of a Broadband Solar Thermal Absorber Using a Deep Neural Network and Experimental Demonstration of Its Performance

Author:

Seo Junyong,Jung Pil-Hoon,Kim Mingeon,Yang Sounghyeok,Lee Ikjin,Lee Jungchul,Lee Heon,Lee Bong Jae

Abstract

Abstract In using nanostructures to design solar thermal absorbers, computational methods, such as rigorous coupled-wave analysis and the finite-difference time-domain method, are often employed to simulate light-structure interactions in the solar spectrum. However, those methods require heavy computational resources and CPU time. In this study, using a state-of-the-art modeling technique, i.e., deep learning, we demonstrate significant reduction of computational costs during the optimization processes. To minimize the number of samples obtained by actual simulation, only regulated amounts are prepared and used as a data set to train the deep neural network (DNN) model. Convergence of the constructed DNN model is carefully examined. Moreover, several analyses utilizing an evolutionary algorithm, which require a remarkable number of performance calculations, are performed using the trained DNN model. We show that deep learning effectively reduces the actual simulation counts compared to the case of a design process without a neural network model. Finally, the proposed solar thermal absorber is fabricated and its absorption performance is characterized.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3